MOTORS WITH SPEED SENSOR -

MM...RS

MP...RS and MR...RS

MH...RS

TECHNICAL DATA OF THE SPEED SENSOR

Technical data

Frequency range 0...15 000 Hz
Output PNP, NPN
Power supply 10...36 VDC
Current input 20 mA (@24 VDC)

Ambient Temperature -40...+125°C [-40...+257°F]

Protection IP 67
Plug connector M12-Series
Mounting principle ISO 6149

Output signal

Load max.:I_{high}=I_{low}<50mA

Motor type	MM	MP	MR	МН
Pulses per revolution	30	36	36	42

Wiring diagrams

 $R_{Load}[k\Omega]=U_{d.c.}[V]/I_{max}[mA]$

Stick type

Order Code for Speed Sensor

Terminal No.	Connection	Cable Output
1	U _{d.c.}	Brown
2	No connection	White
3	0V	Blue
4	Output signal	Black

Sensor Code	Output type	Electric connection
RSN	NPN	Connector BINDER 713 series
RSP	PNP	Connector BINDER 713 series
RSNL5	NPN	Cable output 3x0,25; 5 m [196 in] long
RSPL5	PNP	Cable output 3x0,25; 5 m [196 in] long

NOTE: *- The speed sensor is not fitted at the factory, but is supplied in a plastic bag with the motor. For installation see enclosed instructions.

APPLICATION CALCULATION

VEHICLE DRIVE CALCULATIONS

1.Motor speed: n, RPM

$$n = \frac{2,65 \times v_{km} \times i}{R_{m}}$$

$$n = \frac{168 \times V_{ml} \times i}{R_{in}}$$

v_{km}-vehicle speed, km/h;

v_{ml}-vehicle speed, mil/h;

R_m-wheel rolling radius, m;

R_{in}-wheel rolling radius, in;

i-gear ratio between motor and wheels.

If no gearbox, use i=1.

2.Rolling resistance: RR, daN [lbs]

The resistance force resulted in wheels contact with 5.Tractive effort: DP,daN [lbs] different surfaces:

 $RR = G \times \rho$

G- total weight loaded on vehicle, daN [lbs]; ρ-rolling resistance coefficient (Table 1).

Table 1

Rolling resistance coefficient In case of rubber tire rolling on different surfaces		
Surface	ρ	
Concrete- faultless	0.010	
Concrete- good	0.015	
Concrete- bad	0.020	
Asphalt- faultless	0.012	
Asphalt- good	0.017	
Asphalt- bad	0.022	
Macadam- faultless	0.015	
Macadam- good	0.022	
Macadam- bad	0.037	
Snow- 5 cm	0.025	
Snow- 10 cm	0.037	
Polluted covering- smooth	0.025	
Polluted covering- sandy	0.040	
Mud	0.037÷0.150	
Sand- Gravel	0.060÷0.150	
Sand- loose	0.160÷0.300	

3.Grade resistance: GR, daN [lbs]

$$GR=G \times (\sin\alpha + \rho \times \cos\alpha)$$

α-gradient negotiation angle (Table 2)

Table 2

Grade %	lpha Degrees	Grade %	α Degrees
1%	0° 35'	12%	6° 5'
2%	1º 9'	15%	8° 31'
5%	2° 51'	20%	11º 19'
6%	3° 26'	25%	14° 3'
8%	4° 35'	32%	18°
10%	5° 43'	60%	31°

4. Acceleration force: FA, daN [lbs]

Force FA necessary for acceleration from 0 to maximum speed v and time t can be calculated with a formula:

$$FA = \frac{V_{km} \times G}{3.6 \times t}, [daN] \qquad FA = \frac{V_{ml} \times G}{22 \times t}, [lbs];$$

$$FA = \frac{V_{ml} \times G}{22 \times t}, [lbs];$$

FA-acceleration force, daN [lbs]; t-time, [s].

Tractive effort DP is the additional force of trailer. This value will be established as follows:

-acc.to constructor's assessment:

-as calculating forces in items 2, 3 and 4 of trailer; the calculated sum corresponds to the tractive effort requested.

6.Total tractive effort: TE, daN [lbs]

Total tractive effort **TE** is total effort necessary for vehicle motion; that the sum of forces calculated in items from 2 to 5 and increased with 10 % because of air resistance.

$$TE=1,1x(RR + GR + FA + DP)$$

RR - force acquired to overcome the rolling resistance;

GR- force acquired to slope upwards;

FA- force acquired to accelerate (acceleration force);

DP- additional tractive effort (trailer).

7.Motor Torque moment: M, daNm [in-lb]

Necessary torque moment for every hydraulic motor:

$$M = \frac{TE \times R_{in}[R_{m}]}{N \times i \times h_{M}}$$

N- motor numbers;

η_м-mechanical gear efficiency (if it is available).

8.Cohesion between tire and road covering: Mw, daNm [in-lb]

$$M_{w} = \frac{G_{w} \times f \times R_{in}[R_{m}]}{i \times h_{w}}$$

To avoid wheel slipping, the following condition should be observed $M_w > M$

f -frictional factor;

G_w- total weight over the wheels, daN [lbs].

Tahla 3

Surface	Frictional factor f	
Steel on steel	0.15 ÷ 0.20	
Rubber tire on polluted surface	0.5 ÷ 0.7	
Rubber tire on asphalt	0.8 ÷ 1.0	
Rubber tire on concrete	0.8 ÷ 1.0	
Rubber tire on grass	0.4	

9.Radial motor loading: Prad, daN [lbs]

When motor is used for vehicle motion with wheels mounted directly on motor shaft, the total radial loading of motor shaft \mathbf{P}_{rad} is a sum of motion force and weight force acting on one wheel.

Prad - Total radial loading of motor shaft;

M/R- Motion force.

In accordance with calculated loadings the suitable motor from the catalogue is selected.

DRAINAGE SPACE AND DRAINAGE PRESSURE

Advantages in oil drainage from drain space: Cleaning; Cooling and Seal lifetime prolonging.

